A multi-model analysis of the role of the ocean on the African and Indian monsoon during the mid-Holocene
نویسندگان
چکیده
We investigate the role of the ocean feedback on the climate in response to insolation forcing during the mid-Holocene (6,000 year BP) using results from seven coupled ocean–atmosphere general circulation models. We examine how the dipole in late summer seasurface temperature (SST) anomalies in the tropical Atlantic increases the length of the African monsoon, how this dipole structure is created and maintained, and how the late summer SST warming in the northwest Indian Ocean affects the monsoon retreat in this sector. Similar mechanisms are found in all of the models, including a strong wind evaporation feedback and changes in the mixed layer depth that enhance the insolation forcing, as well as increased Ekman transport in the Atlantic that sharpens the Atlantic dipole pattern. We also consider changes in interannual variability over West Africa and the Indian Ocean. The teleconnection between variations in SST and Sahelian precipitation favor a larger impact of the Atlantic dipole mode in this region. In the Indian Ocean, the strengthening of the Indian dipole structure in autumn has a damping effect on the Indian dipole mode at the interannual time scale.
منابع مشابه
Climate-Human interaction over the Iranian Plateau during the Upper Pleistocene-Holocene: A review
During the past two decades an array of studies have shed light on potential links between the evolution of Hominids as well as Human dispersal out of Africa and episodes of abrupt climate change. Although archaeological evidences suggest that anatomically modified humans appeared in Africa between 200 and 150 ky ago, the timing of the early humans migration out of Africa remained unclear. Stra...
متن کامل3D Modeling of Wind-Driven Circulation In The Northern Indian Ocean During Monsoon
Abstract The purpose of this research is to design and identify some of the natures and characteristics of high-resolution surface currents in the Northern Indian Ocean. The pattern of 3D circulation of the Wind-driven surface currents, Sea surface temperature (SST) and Sea Surface Salinity (SSS) distribution in the Northern Indian Ocean using The MIT general circulation model (MITgcm) with ho...
متن کاملEvaluation of the performance of the CMIP5 General Circulation Models in predicting the Indian Ocean Monsoon precipitation over south Sistan and Baluchestan, using the past hydrological changes in the region
1-Introduction Climate change refers to any significant change in the existing mean climatic conditions within a certain time period (Jana and Majumder, 2010; Giorgi, 2006). Earth's climate change through history has happened (Nakicenovic et al., 2000; Bytnerowicz et al., 2007). 2-Materials and methods In this study, daily precipitation and daily maximum (Tmax) and daily minimum (Tmin) tempera...
متن کاملSimulation and Comparison Between Mid-Holocene and Preindustrial Indian Summer Monsoon Circulation Using a Regional Climate Model
The regional climate model HIRHAM has been applied over the Asian continent from 0oN to 50oN and 42oE to 110oE to simulate the Indian monsoon circulation under past and present-day conditions. The model is driven at the lateral and lower boundaries by the atmospheric output fields of the global coupled Earth system model ECHAM5JSBACH/MPIOM for 44-years-long time slices during the mid-Holocene a...
متن کاملSummer precipitation determinant factors of Iran's South-East
Indian Ocean is known as a source of moisture for southeast of Iran due to summer precipitation. In this study, in order to investigate the role of SST of Indian Ocean, and the convergence and divergence fields in the precipitation of southeast of Iran, precipitation data of five synoptic stations were used during 2000-2010, including Iranshahr, Khash, ChahBahar, Zabul, and Saravan. To investig...
متن کامل